Posts tagged as

7 posts

Lifecycle Management and Infrastructure Cleanup: The Overlooked Challenge of Efficiently Decommissioning Resources

In today's fast-paced world of cloud computing, the importance of full lifecycle management in cloud infrastructure cannot be overstated. Many organizations are quick to provision resources in cloud platforms like AWS, GCP, and Azure, but all too often, the critical decommissioning phase is overlooked. This oversight carries both financial and security implications that can be detrimental to a company's bottom line and data integrity.

Simplifying Multi-Cloud, Multi-Tenant SaaS Deployments with Infrastructure as Code (IaC)

The cloud landscape has evolved significantly in recent years, moving businesses beyond the confines of single cloud providers. Enterprises are increasingly embracing multi-cloud strategies to leverage the strengths of various cloud platforms. As they journey into this multi-cloud world, the intricacies of managing their infrastructure through Infrastructure as Code (IaC) become apparent, especially in the context of Software as a Service (SaaS) platforms operating in multi-tenant environments. In this blog post, we will explore the rise of multi-cloud deployments, the role of IaC as the glue that holds it together, the unique challenges posed by SaaS in a multi-cloud world, and best practices and solutions to navigate these complex scenarios.

Kubernetes and container networking in multi-cloud environments: Why it is not easy and why you need Sparta like skills

As the world of technology continues to evolve, containerization has become a popular choice for deploying applications. Kubernetes is an open-source container orchestration system that has gained popularity due to its ability to manage and deploy containers across multiple hosts.

However, managing Kubernetes and container networking in multi-cloud environments can be challenging. This is where Sparta-like skills can come in handy.

Unlocking the Full Potential of Kubernetes with Amazon Linux 2023

Kubernetes has become the go-to container orchestration tool for many organizations. However, achieving the full potential of Kubernetes requires the right operating system. Kubernetes is a popular open-source container orchestration system for automating the deployment, scaling, and management of containerized applications.

Amazon Linux 2023, the latest version of Amazon Linux, is optimized for running workloads on AWS, and it provides a powerful platform for running Kubernetes clusters.

In this blog post, we will discuss how Amazon Linux 2023 can help you unlock the full potential of Kubernetes, with code examples that showcase the advanced features and capabilities of the operating system.

AKS Edge Essentials - On-premises Kubernetes implementation of Azure Kubernetes Service

AKS Edge Essentials, an on-premises Kubernetes implementation of Azure Kubernetes Service that automates running containerized applications at scale on PC-class or “light” edge hardware. It highlights the features, benefits and use cases of AKS Edge Essentials, such as:

  • A lightweight and supported Kubernetes distribution with a simple installation experience
  • A cloud-based management plane for Kubernetes clusters running anywhere
  • Support for both Linux-based and Windows-based containers
  • Interoperability between native Windows applications and containerized Linux workloads
  • A fully supported stack from kernel to cloud with security and update policies
  • Azure Arc integration to extend the Azure platform to the edge with core services

An Introduction to Kubernetes-based Event-Driven Autoscaling

Kubernetes-based event-driven autoscaling (KEDA) is a powerful tool for automating the scaling of your Kubernetes applications based on event-driven workloads. KEDA is an open-source project that is built on top of Kubernetes, and it allows you to scale your workloads dynamically based on the volume of events that are generated by your applications. In this blog post, we’ll provide an introduction to KEDA and show you how to get started using it with examples in Java, Golang, and YAML code.

Cloud Native vs Cloud Agnostic: Weighing the Trade-Offs

Speed ​​is an important factor for business in this era when customers are looking for instant gratification. If the fact doesn’t convince you, the statistics might. An element as simple as a website’s load time carries weight. Statistics indicate that the first five seconds of a page load time have the greatest impact on conversion rates. So when consumer behavior has the greatest impact, it is profitable in the long run to modernize a business model accordingly.

The faster a company can develop and ship a product to its customers, the more likely it is to avoid problems in a fast-paced environment. Cloud Native as a form of technology is designed for this. It is a behavior-driven development model designed, built, and optimized to run in the cloud.

Cloud native applications can easily be mistaken as another tool for the digital first era or another platform. However, it is a complete shift to a set of different practices, automated testing, design, customer centric model and an accelerated production environment. With shorter delivery cycles and higher quality, working in the cloud native database requires a transformation within the entire development team of an organization.